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Abstract
This paper gives a theoretical background for a new electrowetting system based
on interfaces between two immiscible electrolytic solutions. It presents a linear-
response Poisson–Boltzmann theory to describe an electrolytic droplet on a
charged flat electrode, bounded by another electrolytic solution. Immiscibility
of the two solutions causes back-to-back double layers to form at the liquid–
liquid interface, which dramatically change the polarization response. Useful
approximations are developed that apply to droplets with typical experimental
volumes. Under the derived approximations, minimization of the free-energy
functional proves that polarized droplets take the shape of truncated spheres and
reveals a law of contact-angle variation with applied potential. This dependence
is determined by the interfacial tensions and the electrolyte concentrations
in and dielectric constants of the liquid phases. The study of contact-angle
variation with electrode potential may be used, among other applications, as a
new tool to investigate the effect of solution properties on liquid–liquid surface
tensions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In microfluidic technologies, electrowetting is a popular means by which to regulate small
quantities of liquid. ‘Lab-on-a-chip’ devices for biomedical diagnostics are perhaps the best
studied area of microfluidics, but electrowetting is useful in a far broader range of miniaturized
systems. Much recent research of electrowetting has focused on the precise manipulation of
isolated droplets on polarized surfaces for optical technologies. Potential applications of liquid-
droplet electrowetting include variable-focus lens technology [1, 2], electronic displays [3, 4],
fibre optics [5, 6], and microelectromechanical devices [7, 8].
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Below, we study the polarization response of a new three-phase electrowetting system. It
consists of a liquid droplet, which lies on the surface of a flat solid electrode and is surrounded
by another liquid. The two liquids are immiscible. In experiments, the droplet is typically an
oil, and the surrounding liquid is water—but in principle this situation could be reversed. A
certain amount of electrolyte is dissolved in each of the two liquid phases: the oil contains
a fatty salt, preferentially soluble in nonpolar organic liquids (e.g. tetrabutylammonium
tetraphenylborate), whereas the water contains a typical inorganic buffer electrolyte. The
free energies of transfer of the organic electrolyte into water and the inorganic electrolyte
into oil are large enough to prevent permeation of the electrolytes into their neighbouring
phases.

Under polarization, the immiscibility of the two solutions causes back-to-back electrical
double layers to form at the liquid–liquid interface. Interfaces of this kind are called ITIES
(interfaces between two immiscible electrolytic solutions); they have been thoroughly studied
in two-phase geometries [9–17]. Common applications of the ITIES include phase-transfer
catalysis, sensor technology, and biomimetic and molecular devices.

Studies of ITIES in three-phase solid–liquid–liquid geometries are still in their
infancy [18–20]. Properties of the triple electrowetting system, including the potential
distribution, the potential dependence of the three-phase contact angle, and the dynamics of
charge transfer, are not well understood. This article provides a first theoretical analysis of this
potentially useful configuration.

In typical experiments the electrolyte concentrations and droplet volume are fixed. When
a potential is applied to the system, the salt in the droplet does not escape, no matter how
the shape of the liquid–liquid interface changes. Because no reaction consumes either of
the liquids, the total volume of the droplet also remains constant with potential. Thus, the
average electrolyte concentration in the droplet remains unchanged as its shape changes with
polarization.

Our main task is to find the shape of the droplet for a given potential drop between the
working and counter electrodes, and, specifically, the contact angle between the liquid–liquid
interface and the working electrode. To implement this task requires an understanding of the
potential distribution in this system as a function of the applied potential, which is also relevant
to future analysis of kinetic processes in the three-phase system. Problems of this type are
familiar from the theory of electrowetting [21–24]. The essential new element in our study
is the ion-impermeable liquid–liquid interface; this makes the physics very different from that
employed in the papers cited above.

A natural approach to this problem is as follows. Solve the Poisson–Boltzmann (PB)
equations—applicable at moderate polarizations and electrolyte concentrations—to determine
the potential distributions in the two liquid phases for a droplet of a given volume but an
arbitrary shape. Use the potential distributions to evaluate the electrostatic energy, which can
be added to the surface energy to give the total free energy. Finally, minimize the free-energy
functional with ionic numbers fixed in the droplet to determine the shape, and, thereby, obtain
the contact angle. The conservation of ionic numbers in the droplet is a key feature of this
system which must be taken into account.

Mathematically, this approach is difficult. Therefore to understand the basic physics,
we consider small electrode polarizations, for which the PB equations can be linearized. A
nonlinear version of the theory will be reported elsewhere.

To elucidate the physics of polarized immiscible-electrolytic droplets, the paper first
provides an electrostatic analysis of droplets with fixed shapes. This discussion explains two
useful and general approximations that apply to the system. To a certain extent, at least for
large droplets (with mean radius of curvature �103 Debye lengths in the droplet phase), we
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Figure 1. Sketch of the charge distribution when the net charge is conserved in an electrolytic
droplet.

show that the electrostatic analysis of a two-electrolyte system actually becomes much simpler
than that of a system with pure dielectric liquids.

First, a hemispherical droplet is treated; in this case, an exact solution of the PB equations
can be obtained. The results show that droplets with volumes typically used in experiments
may be described as ‘infinitely large’—the upshot being that most of the liquid–liquid interface
resides at a constant potential. Second, droplets that take the shape of truncated spheres are
analysed in the large-volume regime. It is shown that the electric field components diverge near
the line of three-phase contact, but that the divergence does not significantly affect the total
electrostatic energy. This remains true at all contact angles of the truncated sphere.

After this preliminary analysis, the fixed-shape restriction is relaxed and the method
described above is employed: the free energy is used directly to determine the droplet shape
and contact angle. Minimization of the free-energy functional proves that the optimal shape for
an immiscible-electrolytic droplet at macroscopic length scales is indeed a truncated sphere.

The ultimate result is a simple formula, equation (61), which shows how the contact angle
varies with applied potential. It is expressed in terms of the dielectric properties of the solvents,
the Debye lengths of the electrolytes, the contact angle at zero polarization, and the liquid–
liquid surface tension. For solutions with given composition, this formula can easily be used to
determine liquid–liquid surface tensions from experimental measurements of the contact angle
as a function of potential.

2. Consequences of ion-number conservation in a droplet

To envision what happens to the immiscible-electrolytic droplet when the electrode is polarized,
perform a thought experiment. Imagine that the electrode is raised to a positive potential. One
expects a response like that shown in figure 1. Within the droplet, negative charges are driven
to aggregate near the charged electrode surface. Because the numbers of each type of ion
within it are fixed, the interior of the droplet cannot carry a net charge. When anions in the
droplet are drawn toward the electrode, a net excess of cations must arise elsewhere because
the droplet surface is impermeable. The excess positive ions may be expected to move towards
the liquid–liquid interface, where they can be balanced by negative ions from the surroundings.

This constraint on the interior of the droplet is expressed through two equations that require
the conservation of the individual ionic numbers within it. Multiplying these two equations
by the ionic equivalent charges and adding them gives a single equation that expresses the
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conservation of the net droplet charge, through the integral∫
Vd

(
zd
+cd

+ + zd
−cd

−
)

dV = 0. (1)

Here Vd is the droplet volume; cd
i and zd

i are the concentration and equivalent charge of ion i
in the droplet, respectively. A consistent physical formulation must account for this additional
restriction.3

The PB equations in the droplet interior must be written with care to take into account that
its boundaries inhibit the free thermal motion of ions. As a result of this entropic limitation, the
droplet resides at a potential with a magnitude elevated from that of the surrounding solution
far from the electrode. In other words, the potential at which charge density is zero in the
droplet, denoted by�∗, is shifted towards the electrode potential from the potential in the outer
liquid bulk. One can account for the potential shift due to constrained ion motion by taking the
distributions of concentrations to be

cd
i = cd

0ν
d
i exp

[
− zd

i F (�d −�∗)
RT

]
, (2)

where �d, cd
0, and νd

i are the potential, bulk electrolyte concentration, and stoichiometric
number of ion i in the droplet, respectively; F is Faraday’s constant, R is the gas constant,
and T is the absolute temperature. Because �d and �∗ have the same sign, equation (2)
expresses that it is more difficult to induce local concentration changes in the droplet because
the ions within it are not fully free to move. Linearization of the concentration distributions in
equation (2) near �∗ yields an equation on electrostatic potential in the droplet,

∇2
(
�d −�∗) = �d −�∗

λ2
d

, (3)

where λd is the Debye length in the droplet phase. Ultimately,�∗ is found by substitution of the
solution of this equation into equation (1). The potential in the bulk of the outer solution is zero;
it provides an infinite source of ions and does not inhibit their free motion. The PB equation
that describes the surroundings uses standard Boltzmann distributions linearized around null
potential, yielding

∇2�s = �s

λ2
s

, (4)

where �s is the potential in the outer solution and λs is its Debye length. The equation

λ j =
√√√√ ε0ε j RT

F2c j
0

(
z j
+

2
ν

j
+ + z j

−
2
ν

j
−
) ; j = s, d, (5)

in which ε0 is the permittivity of free space and ε j is the dielectric constant of phase j , gives
the Debye length. The Debye length retains this familiar definition in both phases.

3 Equation (1) is a looser constraint than the two equations on the ion numbers. When a droplet is very small, the
concentration prefactor cd

0 in the Boltzmann distributions may differ from the average electrolyte concentration, cd
ave.

In these cases cd
0 can be lowered appreciably from cd

ave; as ions are drawn toward the interfaces in the droplet interior,
the concentration is depleted at points where the local charge density is zero. For symmetric electrolytes, cd

0 ≈ cd
ave

when the applied potential obeys

|�0| � 4RT

Fzd+

√
rd

λd
,

where λd is the droplet-phase Debye length given by equation (5), computed with the average concentration. This
constraint on potential is less strict than the approximation that justifies linearization of the PB equations when the
droplet’s radius of curvature rd exceeds ∼50λd.
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Figure 2. Sketch of the experimental geometry.

3. Electrostatics of hemispherical droplets

To elucidate the physical impact of ion-number conservation in the electrowetting of
immiscible-electrolytic solutions, we first explore the electrostatics with idealized droplets of
fixed shape. The most easily tractable case is a hemispherical droplet, for which exact solutions
to the linearized PB equations can be obtained. This section provides the potential and charge
distributions for polarized hemispherical droplets in three regimes of size, and determines the
ranges of droplet radius over which each asymptotic result is most accurate.

3.1. Coordinate system and parameters

A hemispherical droplet is taken to lie between two parallel planar electrodes separated by
distance L, as shown in figure 2. The electrode on which the droplet sits is assumed to be an
ideal conductor, and thus is an isopotential surface at potential �0. The droplet has a radius of
curvature rd. Let z designate the distance perpendicular to the near electrode through the axis
of symmetry. We assume the interelectrode distance L � rd, making the system semi-infinite
with� → 0 as z → ∞. Designate the phase within the droplet by d and the surrounding phase
by s, and the corresponding potentials by �d and �s. In spherical coordinates, this system is
insensitive to the azimuthal angle ψ because it is rotationally symmetric about the z-axis; the
potential in phase j ,� j , depends on the radial coordinate r and polar angle θ .

To simplify notation in the governing equations and boundary conditions, introduce the
dimensionless radial coordinate, ξ , and size of the droplet, δ,

ξ = r√
λdλs

, δ = rd√
λdλs

, and x = cos θ, (6)

and transform the polar components of the governing equations to a quasi-Cartesian variable,
x , that ranges from 0 to 1. The potentials are nondimensionalized by

φ j = � j

�0
and φ∗ = �∗

�0
. (7)

In this way, they are scaled to be between 1 at the electrode and 0 far away. Two additional
parameters characterize the physical properties of the immiscible solutions,

χ =
√
εs

εd
, ζ =

√
λs

λd
. (8)
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The relative dielectric properties are expressed through χ , and the properties of the two
electrolytes through ζ .

In a discussion of relevant quantities, variables associated with the distribution of charges
should also be addressed. According to the Boltzmann distribution, equation (2), the local
charge density in phase j , ρ j

e , is given by

ρd
e = −ε0εd�0

λ2
d

(
φd − φ∗) and ρs

e = −ε0εs�0

λ2
s

φs. (9)

A dimensionless charge density, P j
e , with minimum −1 at the near electrode in the solution

surrounding the droplet, can be defined as

P j
e = λ2

s

ε0εs�0
ρ j

e . (10)

In terms of this quantity, equations (9) become

Pd
e = −

cd
0

(
zd+

2
νd+ + zd−

2
νd−

)

cs
0

(
zs+2νs+ + zs−2νs−

) (
φd − φ∗) and Ps

e = −φs. (11)

When the two electrolyte concentrations are the same and the electrolytes are symmetric with
the same equivalent charge, the prefactor on φd is equal to unity in Pd

e .

3.2. Governing equations

The potential distribution around a hemispherical droplet at small applied potentials is given by
the dimensionless forms of equations (3) and (4) in spherical coordinates,

∂

∂ξ

(
ξ 2 ∂φd

∂ξ

)
+

[
(1 − x2)

∂2φd

∂x2
− 2x

∂φd

∂x

]
= ξ 2ζ 2

(
φd − φ∗) , 0 � ξ � δ,

∂

∂ξ

(
ξ 2 ∂φs

∂ξ

)
+

[
(1 − x2)

∂2φs

∂x2
− 2x

∂φs

∂x

]
= ξ 2φs

ζ 2
, ξ � δ. (12)

This system takes the boundary conditions

φd (ξ, 0) = 1 and φs (ξ, 0) = 1, (13)

φd (0, x) = finite and lim
ξ→∞φs (ξ, x) = 0. (14)

The electric displacements are matched at the liquid–liquid interface by

1

χ

∂φd

∂ξ

∣∣∣∣
(δ,x)

= χ
∂φs

∂ξ

∣∣∣∣
(δ,x)

, (15)

whereas the potential-matching condition is

φd (δ, x) = φs (δ, x) . (16)

Inside the droplet, the charge distribution linearized around �∗ (equation (9)) reduces
equation (1) to

∫ 1

0

[∫ δ

0

(
φd − φ∗) ξ 2 dξ

]
dx = 0. (17)

Once a potential distribution has been obtained to satisfy equations (12)–(16), this last equation
specifies the value of φ∗.
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3.3. General solution for hemispherical droplets

The governing system is separable and may be solved with Fourier–Legendre series,

φd − φ∗ = (
1 − φ∗) e−ξ xζ +

∞∑
m=0

dm

[√
δ

ξ

I2m+ 3
2
(ξζ )

I2m+ 3
2
(δζ )

]
P2m+1 (x),

φs = e−ξ x/ζ +
∞∑

m=0

sm

[√
δ

ξ

K2m+ 3
2
(ξ/ζ )

K2m+ 3
2
(δ/ζ )

]
P2m+1 (x). (18)

In the sums, dm and sm are Fourier–Legendre coefficients; I2m+ 3
2

and K2m+ 3
2

are modified

Bessel functions of the first and third kind, respectively, at order 2m + 3
2 . Orthogonality

properties of the odd Legendre polynomials, P2m+1, can be used to obtain dm and sm to satisfy
the matching conditions. The Sturm–Liouville theorem guarantees that both sums converge.

After insertion of the two Fourier–Legendre series and use of the orthogonality properties,
boundary conditions (15) and (16) yield two equations to determine dm and sm . These can be
expressed concisely in the matrix notation. Define the matrix Cm as

Cm =
[ −1 1
ζ I

2m+ 5
2
(δζ )

χ I
2m+ 3

2
(δζ )

+ 2m+1
δχ

χK
2m+ 1

2
(δ/ζ)

ζ K
2m+ 3

2
(δ/ζ)

+ 2χ(m+1)
δ

]
, (19)

and column vectors fm and gm by

fm =
[ ∫ 1

0

(
e−xδζ − e−xδ/ζ

)
P2m+1 (x) dx∫ 1

0 x
(
ζ

χ
e−xδζ − χ

ζ
e−xδ/ζ

)
P2m+1 (x) dx

]
, (20)

gm =
[ ∫ 1

0

(
1 − e−xδ/ζ

)
P2m+1 (x) dx

− ζ

χ

∫ 1
0 xe−xδζ P2m+1 (x) dx

]
. (21)

The Fourier–Legendre coefficients are given by the matrix equation
[

dm

sm

]
= (4m + 3)C−1

m fm + φ∗ (4m + 3)C−1
m gm . (22)

These coefficients account for the liquid–liquid interface: in equation (22), fm is the
contribution of electrostatics without ion conservation (when φ∗ = 0); gm accounts for the
conservation of ionic masses (i.e., for ions reflected from the impermeable interface).

The integral from the charge-conservation condition, equation (17), also needs to be
evaluated. To simplify notation in the condition, introduce the function hm ,

hm = ζ 3
√
δ

I2m+ 3
2
(δζ )

[∫ δ

0
ξ

3
2 I2m+ 3

2
(ξζ ) dξ

] [∫ 1

0
P2m+1 (x) dx

]
. (23)

Then the consistency relation for charge conservation becomes

(
1 − φ∗) [

1
2 (δζ )

2 − 1 + (1 + δζ ) e−δζ ] +
∞∑

m=0

dmhm = 0. (24)

This is an equation on φ∗. As dm depends on φ∗, this equation must be solved with Newton–
Raphson iteration. For details regarding computation of the integrals in fm , gm , and hm when
the droplet is small, see appendix A.
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Figure 3. A potential plateau forms as the droplet radius increases. Contour plots of lnφ as a
function of position in Cartesian coordinates for (from left to right) δ = 2.5, 5, and 10. The contour
lines are at intervals of −0.25 in lnφ; dark lines show negative integer values, and the electrode is
fixed at lnφ = 0. The droplet surface is shown as a dotted line.

Table 1. Properties of the water/nitrobenzene (NB) ITIES used to generate figures. Dielectric
constants are taken to be those of the pure solvents [11, 25].

Phase d Phase s
(nitrobenzene) (water)

εd 34.82 εs 78.33
cd

0 0.01 M cs
0 0.01 M

λd 2.03 nm λs 3.04 nm

Dimensionless parameters

χ 1.500
ζ 1.225

3.4. Small hemispherical droplet results

Table 1 shows the parameters used to compute distributions for three test cases with
‘nanodroplets’ of various radii of the order of the droplet-phase Debye length. In the test cases,
δ = 2.5, 5, and 10. We consider the case when the droplet is a 0.01 M solution in nitrobenzene,
and the surrounding aqueous solution is also 0.01 M. Both electrolytes are taken to be 1:1.

To generate figures 3–6, 80 terms were kept in the Fourier–Legendre series, yielding
numerical results accurate to the fifth significant digit. For the δ = 2.5, 5, and 10 cases,
φ∗ = 0.6045, 0.5345, and 0.4962, respectively.

Potential and charge distributions for the three cases are shown in figures 3 and 4. One
can see from the potential distributions that as δ increases, a plateau of potential near φ∗ arises
within the droplet; the charge-density distributions are similar to the qualitative distribution
sketched in figure 1. Appendix B provides a discussion that contrasts these results with the
situation in which the interface is permeable.

Figure 5 presents the potential along the liquid–liquid surface. It shows that as δ increases,
much of the liquid boundary begins to retain a constant potential; the extent of this isopotential
region increases with droplet size. Figure 6 shows the normal electric displacement and
tangential field at the interface versus θ . The slopes of both increase in magnitude with δ
near the contact line, θ = π/2. Both components of the field become nearly constant across
the liquid boundary when the droplet radius rises: the normal displacement reaches a constant
and the tangential field vanishes.
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Figure 4. Charges condense near all three interfaces. Charge distributions for (from left to right)
droplets with δ = 2.5, 5, and 10. The droplet surface is shown as a solid line in each figure, and the
legend sets a correspondence between the colours on the map and the values of the dimensionless
charge density, P j

e .

Figure 5. The interfacial potential becomes constant over most of the surface as the droplet radius
increases. Potential along the liquid–liquid interface, φs = φd = φ j , as a function of polar angle
for δ = 2.5, 5, and 10. A solid circle on each curve marks the angle at which the charge density is
zero on the droplet side of the surface.

3.5. Large droplets

Although an analysis of ‘nanodroplets’ has yielded some insight toward the distributions of
charge and potential, in experiments droplets are most often of macroscopic dimensions (a
volume>1 µl, corresponding to a mean radius of curvature ∼0.5 mm). Here, we determine the
potential distributions when the radius of a hemispherical droplet is moderately large compared
to the Debye lengths, δ � 1. In this analysis it is assumed that λd and λs are of similar
magnitude; then ζ is of order unity.

Asymptotic expansions are straightforward to perform for the integrals and functions
contained in equations (20) and (21). The asymptotic expansions take the form

fm ≈ f(2)m + o(δ−3) and gm ≈ g(0)m + g(2)m + o(δ−3). (25)

In these expressions, a superscript ( j) on fm or gm indicates the asymptotic correction to order
δ− j ; the exact forms of the correction terms are cumbersome, and are shown in appendix C.
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Figure 6. Field components along the liquid–liquid interface. Dimensionless normal electric

displacement,
√
λdλs
εdεs

Dr
ε0�0

, and tangential field, Eθ /�0, as a function of polar angle for δ = 2.5, 5,

and 10.

One can see that the effect of the impermeable boundary dominates the potential distribution,
because gm = o(δ0) and fm = o(δ−2). Neither of the vectors has a correction of o(δ−1). The
matrix Cm can be expressed as

Cm ≈ C(0)
m + C(1)

m + C(2)
m + o(δ−3), (26)

and hm takes the form

hm ≈ (δζ )2
[
h(0)m + h(1)m + h(2)m + o(δ−3)

]
. (27)

Again, the exact expressions for all four expansions are given in appendix C, equations (C.9)–
(C.14).

Equations (25)–(27) allow determination of the Fourier–Legendre coefficients when a
droplet is moderately large in comparison to the two Debye lengths. An asymptotic expansion
of the potential distribution valid to order δ−1 can be determined from equation (22) by writing
the Fourier–Legendre coefficients as

dm ≈ d(0)m + d(1)m + o(δ−2),

sm ≈ s(0)m + s(1)m + o(δ−2).
(28)

The terms of highest order in δ are given by[
d(0)m

s(0)m

]
= φ∗ (4m + 3)

(
C(0)

m

)−1
g(0)m , (29)

and those of the next lower order are[
d(1)m

s(1)m

]
= − (

C(0)
m + C(1)

m

)−1
C(1)

m

[
d(0)m

s(0)m

]
. (30)

Note that the quantity (C(0)
m + C(1)

m ) must be retained in this equation because C(1)
m increases

with m at constant δ, and hence is not always small compared to C(0)
m . To obtain φ∗ to order

δ−1, one can use the charge-conservation relation, which expands to

1

φ∗ =
[

1 − 2
∞∑

m=0

d(0)m h(0)m

φ∗

]
− 2

∞∑
m=0

d(0)m h(1)m + d(1)m h(0)m

φ∗ + o(δ−2). (31)

Each term with a summation is independent of φ∗ because d (0)m and d(1)m are directly proportional
to φ∗, as shown by equations (29) and (30). The bracketed term is o(δ0).
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3.6. Very large droplets

In the limit when δ → ∞, the expansions are simplified dramatically. The zero-order terms in
equations (27), (29), and (31) can be used to determine φ∗, which, after summing the infinite
series over m, is given by

lim
δ→∞ φ

∗ = χ2 + ζ 2

3χ2 + ζ 2
. (32)

Substituting this relation into equation (29) shows

lim
δ→∞ dm = (−1)m+1 χ2 (4m + 3) �(m + 1

2 )

2
√
π

(
3χ2 + ζ 2

)
�(m + 2)

,

lim
δ→∞ sm = (−1)m ζ 2 (4m + 3) �(m + 1

2 )

2
√
π

(
3χ2 + ζ 2

)
�(m + 2)

.

(33)

These two expressions can be inserted into equation (18) to demonstrate that the potential at
the apex of the droplet is

lim
δ→∞

φapex = ζ 2

3χ2 + ζ 2
. (34)

Recall that in the case of large droplets, almost all of the interface retains the constant potential
φ = φapex. It is interesting to find the angle along the droplet surface at which charge density is
zero,

∞∑
m=0

(−1)m+1 (4m + 3) �(m + 1
2 )P2m+1 (limδ→∞ xzc)

�(m + 2)
= 0, (35)

which comes from equation (31). This equation shows that limδ→∞ xzc = 0; the line of three-
phase contact has zero charge in phase d for very large droplets. The equation is independent
of χ and ζ , revealing that this result in the infinite limit is the same for all combinations of
electrolytic solutions in phases d and s when ζ = o(1) and δ → ∞.

3.7. Results for various droplet sizes

The values of φ∗ and φapex yielded by the exact series, the first-order expansion, and the
limiting expression valid when δ → ∞ are presented in figures 7 and 8. Both figures
employ the parameters listed in table 1. With those parameters, limδ→∞ φ∗ = 0.4545 and
limδ→∞ φapex = 0.1818. Due to extremely slow convergence of the Fourier–Legendre series in
the asymptotic expansion, five-digit numerical accuracy requires 27 000 terms; four significant
figures can be achieved with 2000 terms.

Figure 7 shows that the first-order expansion predicts φ∗ with great accuracy when δ � 10,
and that the δ → ∞ expression is very accurate when δ � 1000. One should bear in mind
when using the expansions for other cases that the relevant quantity is δζ (=rd/λd) rather than
δ; for systems with different parameters, then, the exact solution is valid when δζ � 12.25,
the first-order expansion agrees to the fifth significant figure when 12.25 < δζ � 1225, and
the infinite limit agrees to the fifth significant digit when δζ > 1225. Because most droplets
investigated experimentally are of macroscopic dimensions (δζ > 105), this result shows that
the expansion valid in the limit δ → ∞ is reasonable to use under most practical circumstances.

The potential at the droplet apex, φapex, is shown as a function of δ in figure 8. To generate
this figure, the first-order asymptotic expansion was used when δ > 10. When δ < 4.5, φapex

decreases as δ rises. Figures 3 and 4 provide a means by which to interpret this behaviour.
They show that when δ is equal to 10, the charge is near zero across most of the droplet interior
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Figure 7. Exact and approximate solutions: semilog plot of φ∗ as a function of δ. The exact solution
is shown in grey, the first-order expansion is given by the black line, and the dashed line shows the
limiting expression valid when δ → ∞.

Figure 8. Nonmonotonic variation of the apex potential with droplet radius. Semilog plot of φapex

as a function of δ. The black curve is a composite of the exact solution, used when δ � 10, and the
first-order expansion. The dashed line shows the limiting expression valid when δ → ∞.

and there is a plateau in potential near φ∗. The plateau does not exist when δ is 2.5 because
the droplet radius is near the screening length. Charges near the electrode are not completely
screened within the droplet; unscreened charge thus leads φapex to rise as δ decreases from 4.5.

At δ ≈ 4.5, the droplet is large enough to admit a potential plateau but remains sufficiently
small compared to the screening length that the countercharges balancing the electrode-surface
charge are impacted near the apex. This limits the amount of charge that can be accumulated
at the surfaces, leading to a minimum in φapex. As δ increases from 4.5 the peak potential rises
because balancing countercharges can distribute uniformly over a larger portion of the liquid–
liquid surface—a trend also supported by figures 5 and 6. When δ grows very large, φapex tapers
to a constant value; the range of electrode-charge screening decreases relative to the radius of
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Figure 9. The angle of zero charge goes to the three-phase contact line with increasing radius.
Semilog plot of θzc as a function of δ. The black curve is a composite of the exact solution, used
when δ � 10, and the first-order expansion. The dashed line shows the limiting expression valid
when δ → ∞.

the droplet as δ rises, while the areas of the liquid–liquid interface and of droplet–electrode
contact (through which electric fields pass) remain in fixed proportion.

Define the angle of zero charge, θzc, as the angle at which Pd
e = 0 on the inner droplet

surface (θzc = acos xzc). Note that limδ→∞ 2θzc/π = 1. Figure 9 shows this quantity as
a function of δ.4 The figure emphasizes the argument of the preceding paragraphs. When the
droplet is small, the unscreened electrode charge covers a significant portion of the liquid–liquid
interface. The angle of zero charge rapidly approaches π/2 when δ > 20—the regime in which
countercharges spread to cover most of the liquid–liquid interface uniformly. At δ = 1000, the
value of θzc differs from π/2 by less than 10−7, suggesting that the surface charge reaches a
constant value along the liquid–liquid interface over a distance less than a Debye length.

4. Truncated-spherical droplets

In reality, the contact angle of the oil–water interface is determined by the degree of polarization
and the three surface tensions between oil, water, and substrate. It has been observed
experimentally that, for nitrobenzene droplets surrounded by water on a glassy carbon substrate
at zero polarization, the contact angle is 95◦ [27]. In these experiments the contact angles
were found to increase with increased applied potential. A droplet of initial radius 1 mm
(Vd ≈ 20 µl) was shown to retain a truncated-spherical shape up to a polarization of 1 V.
It is reasonable to expect that the electrolytic system behaves similarly. In fact, a subsequent

4 The droplet-apex potential and φ∗ can be determined solely from the Fourier–Legendre coefficients without any
evaluations of special functions in the potential distributions (equations (18)). However, the computation of θzc

requires numerically accurate Legendre polynomials at large m. High-precision Legendre polynomials were obtained
to generate figure 9 by the trigonometric series

P2m+1 (cos θ) =

(
4m+2

2m+1

)

24m+1

m∑
k=0

[(
2m + 1

k2

)2 /(
4m + 2

2k

)]
cos [(2m − 2k + 1) θ ] ,

which can be derived by induction with one of the expansion methods from [26]. The terms in the summation decrease
absolutely with increasing k when θ = 0.
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Figure 10. Sketch of truncated-spherical droplets, for acute contact angles (left) and obtuse contact
angles (right).

section provides a theoretical justification for the assertion that a truncated sphere is the most
energetically favorable droplet shape. As a preliminary step towards that analysis, we first
examine the electrostatics when droplets take fixed truncated-spherical shapes.

4.1. Parameterization of shape

Truncated-spherical droplet shapes are shown in figure 10. In this analysis, the contact angle
with the electrode, αc, is assumed to be known. It may be acute or obtuse, as shown in the
figure. The figure places the origin of coordinates at the geometric centre of the sphere, which
leaves the governing equations identical to equations (12) and keeps the potential- and electric
displacement-matching equations at a fixed value of ξ . In addition, the definitions of x , ξ , φd,
φs, φ∗, ζ , χ , and δ remain the same. For truncated-spherical droplets, δ is independent of θ .

Although the governing equations are most easily solved in terms of the radius of
curvature, droplet volume is the fixed experimental parameter. It is therefore useful to relate
the radius of curvature to the droplet volume through

δ = 1√
λdλs

[
3Vd

π
(
2 − 3 cosαc + cos3 αc

)
] 1

3

. (36)

This equation also depends on the contact angle αc. In the following analysis, Vd is taken as
fixed to regularize the droplet size; δ then varies with αc only.

In further discussion, it will also be necessary to consider the liquid–liquid and electrode–
droplet interfacial areas. Let Sds

A denote the surface area of the liquid–liquid interface, and Sde
A

denote the area of droplet–electrode contact. A significant parameter that arises is the ratio of
these areas, η = Sds

A /Sde
A . For truncated-spherical droplets,

η = 1

cos2( 1
2αc)

(37)

expresses the ratio of areas in terms of the contact angle. This definition differs when droplets
take alternative shapes.

4.2. The large-droplet approximation

As the analysis of hemispherical droplets has shown, when δζ � 103 the droplet can be
considered as ‘infinitely large’. Only this regime will be treated because it applies in almost all
experiments. Also, it was demonstrated for hemispheres that when δζ � 103 a vast majority
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of the liquid–liquid interface maintains a constant potential and null tangential field. The
potential does change along the liquid–liquid interface in a very small region near the line
of three-phase contact; this region can be neglected because it makes a negligible contribution
to the total electrostatic energy. (The discussion in appendix D rigorously justifies this aspect
of the approximation.) Because the polar-angle dependence of potential is negligible over
the vast majority of the liquid–liquid interface, its curvature can be neglected. The liquid–
liquid interface and the droplet–electrode interface may be treated as separate one-dimensional
regions, with surface charges related through the constant bulk potential φ∗. The adoption
of these assumptions for droplets with δζ � 103 is referred to here as the ‘large-droplet
approximation’.

4.3. Potentials in the large-droplet approximation

We first adopt the large-droplet approximation to examine the potential distribution near the
liquid–liquid interface. This region is considered semi-infinite in both directions normal to the
interface, and its curvature is neglected. Let z ′ denote a coordinate along the outward normal
of the droplet surface, with z ′ = 0 at the interface. Potential distributions that satisfy potential-
and electric displacement-matching conditions at z ′ = 0 are

φds
d = φ∗ − φ∗χ2

χ2 + ζ 2
e

ζ z′√
λdλs , z′ � 0,

φds
s = φ∗ζ 2

χ2 + ζ 2
e
− z′
ζ
√
λdλs , z′ � 0,

(38)

where a superscript ds denotes the potential near the liquid–liquid interface. These distributions
are similar to ones obtained in the linear approximation for a planar ITIES (with no compact
solvent layer between solutions) [28].

Under the large-droplet approximation, the droplet–electrode interface may also be treated
as a semi-infinite planar region. Let a superscript de denote contributions to the potential
arising from the droplet–electrode interface, and se denote those from the surrounding solution–
electrode interface. Taking linearized PB equations with φde

d = φse
s = 1 at the electrode surface,

limz→∞ φde
d = φ∗, and limz→∞ φse

s = 0, one obtains

φde
d = (

1 − φ∗) e
− ζ z√

λdλs + φ∗ and φse
s = e

− z
ζ
√
λdλs , (39)

familiar forms from the planar double-layer theory.
To retrieve the value of φ∗, the charges contained in regions ds and de within the droplet

are set to be equal and opposite. This is most easily performed by using surface integrals of
the fields around the droplet boundary. At this stage, we adopt the second part of the large-
droplet approximation and neglect the small region near the line of three-phase contact where
the potential changes along surface ds. A charge balance by surface integrals of the fields shows
that

φ∗ = χ2 + ζ 2

χ2 (1 + η)+ ζ 2
(40)

gives φ∗ (recall that equation (37) defines η for truncated spheres). The potential at the liquid–
liquid interface, φds

j (δ), is then

φds
j (δ) = ζ 2

χ2 (1 + η)+ ζ 2
. (41)

When the contact angle is π/2, η = 2, and these equations agree with the analogous results
derived for large hemispheres, equations (32) and (34).
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Figure 11. The droplet bulk potential and liquid–liquid interface potential decrease monotonically
with respect to contact angle. Plot of φ∗ and φds

j (δ) as a function of contact angle for a 0.01 M
nitrobenzene droplet surrounded by a 0.01 M aqueous solution.

Figure 11 shows the values of φ∗ and φds
j (δ) as a function of contact angle for a system with

the parameters given in table 1. The figure shows that in the limit of nonwetting both potentials
go to zero: the interior of the droplet maintains no concentration gradients when αc goes to
π . Both potentials also fall monotonically with the contact angle; their maximum values in the
limit of complete wetting are determined by the values of ζ and χ . The maximum charge
density that the surrounding solution can maintain near the droplet surface is proportional
to −φds

j (δ); thus, as the droplet contracts, the density of countercharges in the surroundings
decreases. This tendency is the same at all values of χ and ζ .

4.4. Electrostatic energy in the large-droplet approximation

The electrostatic contribution to the free energy during polarization of phase i in region j , E j
i ,

is

E
j

i = −ε0

2

∫
V j

i

εi Ei · Ei dV + 1

2

∫
V j

i

ρi
e(�i −�ref

i ) dV , (42)

where Ei = −∇�i is the electric field and V j
i is the volume of phase i in region j ;�ref

i denotes
the reference potential appropriate to phase i (�ref

d = �∗ and �ref
s = 0). As a reference state

for the energy, we choose the planar-electrode system in the absence of the droplet—that is,
a system with identical electrode geometry, but with only the surrounding solution separating
the electrodes. The polarization energy of this reference state is denoted E0. It is obtained by
insertion of the solution for planar Debye screening into equation (42) and integration over the
entire system volume. This choice of reference state eliminates the need to know the contact
area of the surrounding solution and the electrode.

Under the large-droplet approximation, the polarization energy relative to that of the
reference state, �E , defined as

�E = E ds
d + E ds

s + E de
d + E se

s − E0, (43)

is given by the equation

lim
δ→∞

�E

2πε0�
2
0

√
λdλsεdεs

= χ

[
1

ζ
− ζη

χ2 (1 + η)+ ζ 2

]
δ2 (η − 1)

η2
. (44)
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To derive this equation, regions ds and de were treated as semi-infinite in the volume integrals,
in accord with the large-droplet approximation. Appendix D justifies the neglect of energetic
contributions from the region near the three-phase contact line.

5. Potential dependence of droplet shape

The previous sections have provided an understanding of the electrostatics of polarized
electrolytic droplets in immiscible electrolytic solutions with fixed droplet shape. Here, we
relax this condition and include the surface-tension forces that also affect the shape. It is
assumed here that the large-droplet approximation applies even when droplets are not truncated
spheres, provided that Vd > 2π(1225λd)

3/3. Because the electrostatics have been evaluated
explicitly, the surface tensions may be assumed independent of potential.

5.1. Droplet shape by free-energy minimization

When the droplet shape is not fixed, the electrostatic potentials are still given by equations (38)
and (39); also, η retains its original definition as the ratio of surface areas, η = Sds

A /Sde
A .

However, equations (36) and (37), which are specific to truncated spheres, no longer hold. The
electrostatic energy relative to that of a reference state with no droplet is given by

�E = ε0�
2
0

2

√
εdεs

λdλs

[
χ2 − ζ 2 (1 − φ∗)2

χζ
Sde

A − χζ (φ∗)2

ζ 2 + χ2
Sds

A

]
. (45)

Note that the value of φ∗ depends on η through equation (40), the derivation of which did not
require the droplet to be a truncated sphere.

Also, the energy arising from surface-tension forces relative to the droplet-free reference
state, �C ,

�C = γdsSds
A + (γde − γse) Sde

A , (46)

contributes to the free energy. In the capillary energy �C , γi j is the surface tension between
phase i and j . A subscript e denotes the electrode.

The system free energy relative to the reference state with no droplet, �G, is

�G = �C +�E . (47)

An optimal droplet shape is one that minimizes �G.
Eventually, it follows from equations (45)–(47) that the optimal shape of the droplet is a

truncated sphere. Inserting equations (45) and (46) into equation (47) gives the free energy
more explicitly as

�G =
[
γds − ε0�

2
0χζ (φ

∗)2

2
(
ζ 2 + χ2

)
√
εdεs

λdλs

]
Sds

A

+
[
γde − γse + ε0�

2
0

[
χ2 − ζ 2 (1 − φ∗)2

]
2χζ

√
εdεs

λdλs

]
Sde

A . (48)

The first bracketed term on the right will be denoted γ ∗
ds in the subsequent discussion to simplify

notation.
To determine the droplet shape, one must perform the minimization of �G with Vd fixed.

We designate this constraint on the droplet volume by V . An additional constraint must be
included to express the conservation of ion numbers in the droplet. Equation (40) expresses
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this conservation under the large-droplet approximation. By replacing η in equation (40) with
the ratio of surface areas, one obtains a constraint on the net droplet charge, Q, defined as

Q = �0
[(

1 − φ∗) (χ2 + ζ 2)Sde
A − φ∗χ2Sds

A

] = 0. (49)

This determines φ∗ such that the net charge in the droplet is zero. The value of �0 is included
in this definition so that Q is trivially zero when there is no applied potential.

Let v denote a coordinate extending from the droplet apex (at v = 0) through an outward
normal of the electrode surface, and let W (v) give a member of the family of curves that
describe the radius of the droplet perpendicular to this axis (W (0) = 0). Both surface areas
contained in �G, V , and Q are functionals of W (v): Sds

A [W ] and Sde
A [W ]. The droplet shape

is determined by minimizing�G[W ] − λV [W ] −µQ[W ] with respect to W (v), where λ and
µ are Lagrange multipliers.

The surface area of the liquid–liquid interface depends on W (v) through

Sds
A [W ] = 2π

∫ v0

0
W

√
1 + (W ′)2 dv, (50)

where v0 denotes the position of the electrode relative to the droplet apex. The area of the
region of droplet–electrode contact is

Sde
A [W ] = πW 2 (v0) . (51)

A suitable definition for the volume-constraining functional V [W ] is

V [W ] = π

∫ v0

0
W 2 dv, (52)

because the droplet is symmetric about the axis through its apex.
Taking the variation of the free-energy functional with respect to W and setting it to zero,

one obtains the augmented Young–Laplace equation

1

W [1 + (W ′)2] 1
2

− W ′′

[1 + (W ′)2] 3
2

= λ

γ ∗
ds + µ�0φ∗ . (53)

When taking the variation, a boundary condition on this equation at v0 also arises because the
endpoint of W is not fixed. It has a complicated algebraic form, and is omitted here.

Equation (53) is satisfied if W (v) describes a circular arc with radius of curvature rd =
2(γ ∗

ds +µ�0φ
∗)/λ and infinite slope at W (0) = 0. The multipliers µ and λ can be determined

in terms of v0 through equations (49) and (52); the boundary condition at v0 then specifies the
other endpoint of the arc in terms of the original parameters. Therefore, the circular-arc trial
function provides a unique solution to the governing equations. This concludes the proof that
truncated-spherical shapes are optimal when droplets are polarized.

5.2. Reparameterization of shape

Obtaining v0 through the boundary condition that arises on the Young–Laplace equation is
possible, but very algebraically intensive. It is simpler at this stage to exploit the fact that
equation (53) is satisfied by truncated spheres and return to the functional for free energy.
Then, all of the geometric variables in equation (47) can be parameterized in terms of the
contact angle, which is related to η in equation (37). This provides a simple function for �G,
which can be minimized with respect to contact angle to find the optimal free energy.

The quantity η should be replaced with a more directly accessible experimental parameter.
It is more intuitive to think in terms of contact angles; η can be replaced by the cosine of the
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contact angle, xc, as the independent variable in �G. With equation (37), it can be shown by
trigonometric identity that η is related to xc through

xc = 2 − η

η
. (54)

This variable has the added advantage that when surface-tension forces are included, its value
at zero polarization, x0

c , is given by the Young equation,

x0
c = γse − γde

γds
. (55)

Equation (36) and the definition of xc allow the surface areas of the interfaces ds and de to be
stated in terms of the contact-angle cosine and droplet volume,

Sds
A = 2V

2
3

d

[
9π

(1 − xc) (2 + xc)
2

] 1
3

and Sde
A = V

2
3

d

[
9π (1 + xc)

3

(1 − xc) (2 + xc)
2

] 1
3

. (56)

Substitution of these relations and equations (40) and (54) into equation (45) provides an
expression for �E ,

�E = ε0�
2
0V

2
3

d

2

√
εdεs

λdλs
χ

[
9π (1 + xc)

3

(1 − xc) (2 + xc)
2

] 1
3
[

1

ζ
− 2ζ

χ2 (3 + xc)+ ζ 2 (1 + xc)

]
. (57)

An expression can also be retrieved for the capillary energy term, �C , by insertion of
equations (55) and (56) into (46),

�C = γdsV
2
3

d

[
9π

(1 − xc)(2 + xc)2

] 1
3

[2 − x0
c (1 + xc)]. (58)

This completes the reparameterization in terms of the contact-angle cosine, xc.

5.3. Contact angle by free-energy minimization

Equations (57) and (58) can be inserted into equation (47), reducing�G to a simple function of
�0, Vd, and xc. The contact-angle cosine is then determined by minimizing this function with
respect to xc at fixed �0 and Vd. In fact, because Sds

A and Sde
A are both proportional to V 2/3

d , the
equation that gives the contact angle is independent of the droplet volume, leaving �0 as the
only free parameter if the composition of the system is specified.

Minimization of the free-energy function with respect to the contact-angle cosine yields
the formula

xc − x0
c = ε0�

2
0

2γds

√
εdεs

λdλs
χζ

[(
χ2 + ζ 2

)
xc (1 + xc)

2 + 4χ2

[
χ2 (3 + xc)+ ζ 2 (1 + xc)

]2
− 1

ζ 2

]
. (59)

Under polarization, this transcendental equation determines the cosine of the contact angle as a
function of potential. With no applied potential this expression reduces to the standard Young
equation, xc − x0

c = 0.

5.4. Results for nitrobenzene/water

The surface tension between nitrobenzene and water is γds = 25.5 mJ m−2 [31]; the contact
angle of an unpolarized nitrobenzene droplet surrounded by water on a glassy carbon substrate
is 95◦ [27], which shows that x0

c = (γse − γde)/γds = −0.0872. These parameters and those
in table 1 allow calculation of the contact angle as a function of potential by equation (59).
The result is shown in figure 12, which demonstrates that the contact angle increases with
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Figure 12. Contraction of a droplet with potential. Contact angle, αc = acos xc, as a function of
applied potential for a 0.01 M nitrobenzene droplet surrounded by a 0.01 M aqueous solution.

potential. When polarized, the droplet tends to contract. Because �2
0 appears in equation (59),

this happens whether the applied potential is positive or negative.
The tendency of a nitrobenzene droplet to contract agrees with expectations: contraction

has been observed in the electrolyte-free nitrobenzene/water system [27]. This might be
expected on the basis that water is more polar than nitrobenzene, and hence tends to cover more
of the electrode when the metal is held at fixed potential. We specially considered an opposite
situation, in which the solutions composing the droplet and the surroundings were exchanged—
the case χ = 0.67, ζ = 0.8, x0

c = 0.0872. In this case, the droplet was also found to contract
with increasing polarization (although less strongly). This is somewhat surprising. From the
perspective of solvent polarity, one might expect an expansion if the dielectric constant of the
droplet was higher than that of its surroundings.

To understand why the droplet still contracts when the solutions in the two phases are
switched, one must consider that a balance of surface-tension forces and electrostatic forces
determines the contact angle. Surface forces always tend to draw the system back to the contact
angle at null polarization, which minimizes the surface energy. By contrast, electrostatic forces
drive the system toward a contact angle that maximizes the total capacitance, minimizing the
electrostatic energy. The droplet contracts when the contact angle that maximizes capacitance is
larger than the zero-polarization contact angle, and expands when the capacitance-maximizing
contact angle is smaller.

Our primary focus has been an organic droplet/aqueous surroundings system in which the
specific capacitance of the droplet–electrode interface is lower than that of the interface between
the surroundings and the electrode (χ/ζ > 1). For systems of this type, the capacitance of
a system without a droplet is higher than that of a system with a droplet on the electrode;
electrostatic forces thus drive the system toward the limit of nonwetting (a contact angle of π ).
In such cases, the droplet shape at which surface and electrostatic forces balance always occurs
at a contact angle larger than the zero-polarization angle. Hence, when χ/ζ > 1, the droplet
contracts.

By contrast, from the perspective of electrostatics one might expect the optimal state to be
complete wetting when the droplet–electrode interface has a higher specific capacitance than
the interface between the outer solution and the electrode (χ/ζ < 1). However, the situation
is not this simple because conservation of ionic masses within the droplet reduces the amount
of charge that can accumulate at its inner interfaces. When the droplet–electrode interface
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Figure 13. At small potentials, the contact-angle cosine is linear with potential squared.
Comparison of xc determined from the approximation in equation (61) (solid line) to the exact result
from transcendental equation (59) (dashed line) for a 0.01 M nitrobenzene droplet surrounded by a
0.01 M aqueous solution.

expands, there is a balance between the added specific capacitance and the inhibition of charge
accumulation due to overall droplet electroneutrality. Thus, if χ/ζ < 1, the electrostatically
optimal contact angle lies somewhere in the regime of partial wetting. This optimizing angle
may be greater than or less than the zero-polarization contact angle. Hence, the droplet can
either contract or expand. In the case of a 0.01 M aqueous droplet surrounded by a 0.01 M
solution in nitrobenzene, the electrostatically optimal contact angle remains greater than the
zero-polarization contact angle: the droplet contracts.

5.5. Surface tension measurement by contact angle-potential plots

Although equation (59) provides a relatively straightforward means by which to compute the
contact angle as a function of potential, it is still a transcendental equation. A simpler formula
can be obtained by perturbation when the right-hand side of equation (59) is small. By defining
the response function, K (p, q),

K (p, q) ≡ p

[
q (1 + q)2

(
1 + p2

) + 4p2

[
p2 (3 + q)+ (1 + q)

]2
− 1

]
, (60)

a first-order approximation to equation (59) can be written as

xc − x0
c = ε0�

2
0

2γds

√
εdεs

λdλs
K

(
χ

ζ
, x0

c

)
. (61)

Figure 13 compares contact-angle cosines obtained from the transcendental equation (59) to
those given by the approximate formula, equation (61). It shows that the approximation
matches the transcendental relation almost exactly at potentials less than 0.2 V (�2

0 < 0.04 V2).
This potential range is well beyond the upper limit of validity of the linearized PB equations.
Thus, the approximate equation is reasonable to use at all potentials for which the linear theory
is valid.

The dielectric properties and Debye lengths are typical parameters to set in an experiment
(note that χ/ζ = √

εsλd/εdλs). With these and a measurement of the cosine of the zero-
polarization contact angle, x0

c , equation (61) provides a way to obtain the liquid–liquid surface
tension γds from a linear fit of contact-angle cosines versus �2

0.
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Figure 14. Variation of the response function with system parameters. Plot of K (χ/ζ, x0
c ). When

K is negative the droplet expands with polarization; when it is positive the droplet contracts. The
magnitude of K determines the degree of expansion or contraction. The graph on the left shows
K over a practical range of system parameters; the graph on the right shows in detail the range
χ/ζ < 1; the droplet may expand in this range of solution properties when x0

c < −0.64.

One should also note from figure 13 that the exact solution to the transcendental equation
deviates upward from the approximate form as potential increases. At small values of �0,
xc − x0

c is proportional to �2
0 with negative slope, and at large values of �0, xc − x0

c is
proportional to�0 with negative slope. Although the dependence of the contact-angle cosine on
�0 weakens, it does not reach a constant asymptote—this suggests that contact-angle saturation
does not occur in the three-phase solid/ITIES system. However, this result is inconclusive: the
linear PB analysis presented here is restricted to small potentials, and the linear approximation
is only strictly valid in the region where xc is proportional to �2

0. The issue of contact-angle
saturation will be addressed in future work on the nonlinear PB analysis.5

5.6. Shape response as a function of system parameters

It is worthwhile exploring how the parameters in equation (61) determine the response of the
droplet to polarization. By insertion of the definition of Debye length (equation (5)) into the
prefactor of K , one can see that the degree of expansion or contraction with potential can
be enhanced by increasing the electrolyte concentrations while leaving their ratio fixed. One
should bear in mind that x0

c can also be affected by the bulk salt concentrations in the two
phases.

A more interesting quantity to explore is the response function K : its sign determines
whether the droplet expands or contracts upon polarization, and its magnitude determines the
degree of expansion or contraction. Figure 14 shows the variation of the response function
with system properties. For combinations of the parameters where K is negative, the droplet
expands with polarization; if K is positive, the droplet contracts. The figure shows that the
contact-angle cosine must be less than −0.64 for expansion to occur. The liquid–liquid surface
tension must therefore be relatively low, and the zero-polarization contact angle must be obtuse,
for polarization to cause droplet expansion. This suggests that in cases where x0

c < 0, droplet

5 A suggested cause for contact-angle saturation in pure-dielectric electrowetting systems is the increase of field
divergence near the three-phase contact line with increasing contact angle [32]. Appendix D shows that the contribution
of the three-phase contact region to the total electrostatic energy is negligible over all contact angles in the solid/ITIES
system when the large-droplet approximation is valid. If field divergence near the three-phase contact line is the
mechanism of contact-angle saturation, then saturation would not be expected in the systems treated here.
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shapes may be stabilized with respect to potential by the addition of electrically neutral surface-
tension lowering surfactants.

Figure 14 also furthers the previous qualitative discussion of the roles of surface-tension
and electrostatic forces. As the surface tension at the liquid–liquid interface falls (x0

c → −1),
the range of χ/ζ over which the droplet expands increases. The plane x0

c = −1 in the figure,
which corresponds to the lower limit of liquid–liquid surface tension, supports the argument
that electrostatics drive the system toward the capacitance-maximizing shape. When the liquid–
liquid surface forces are removed, contraction occurs when χ/ζ > 1 (the surroundings have
higher specific capacitance), and expansion occurs when χ/ζ < 1.

6. Conclusion

The physics of droplet electrowetting with two immiscible electrolytic solutions differs greatly
from that with two immiscible pure-dielectric liquids. In the electrolytic system, the polarized
electrode surface draws droplet-phase ions toward the electrode, which causes an accumulation
of counterions at the liquid–liquid interface: the droplet has an ion-impermeable boundary, and
therefore must have zero total charge. At the polarized liquid–liquid interface, double layers
form in both the droplet phase and the surrounding solution. This work provides the first theory
to describe electrowetting with ITIES.

A minor modification of the Boltzmann distribution can describe the inhibition of ion
motion by the droplet boundary. In hemispherical droplets, the distributions yielded by an
exact solution of the resulting modified linearized PB equations show that the countercharges
drawn to the liquid–liquid interface are localized in a region that extends only a few Debye
lengths from the surface. This localized charging still occurs when the droplet’s mean radius of
curvature is very much larger than the Debye lengths. When a droplet is large, the entire liquid–
liquid interface maintains a nearly constant potential, and hence, a nearly constant surface-
charge density. Away from the interfaces, most of the interior of a large droplet resides at a
constant potential that lies between the electrode and liquid–liquid surface potentials.

Capillary forces determine the shape of an unpolarized droplet. At zero polarization, the
free-energy minimizing droplet shape is a truncated sphere, and this remains true when the
system is polarized. If the volume of the droplet is fixed, as it would be in experiments, all
governing relationships can be expressed easily in terms of a single geometric parameter: the
contact angle between the liquid–liquid surface and the electrode.

When contact angles deviate from perpendicular, the electrostatic response is essentially
similar to the hemispherical case. The field tangential to the liquid–liquid interface diverges
near the three-phase contact line in hemispheres, and may diverge more strongly if the contact
angle changes. However, the divergence at all contact angles is sufficiently weak that the
contribution of this field singularity to the total electrostatic energy (and the change in total
electrostatic energy with respect to contact angle) is small. Neglect of the three-phase contact
region is rigorously valid when the droplet’s mean radius of curvature is much greater than 103

droplet-phase Debye lengths. In that size regime, the polar-angle dependence of potential can
be neglected.

Surface tension always tends to pull a droplet back to its unpolarized contact angle.
Electrostatic forces tend to move the contact angle to one that maximizes the system
capacitance. These two effects determine the polarization response. If the capacity-maximizing
contact angle is smaller than the unpolarized contact angle, the droplet will expand upon
polarization. Expansion happens when liquid–liquid surface tensions are relatively low, the
zero-polarization contact angle is obtuse, and the inner area-specific capacitance is higher than
the outer. Otherwise the droplet contracts.
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Contraction or expansion of an electrolytic droplet surrounded by an immiscible
electrolytic solution is determined by the solution compositions, the applied potential, the zero-
polarization Young angle, and the liquid–liquid surface tension. At small potentials a simple
law, equation (61), gives the contact angle as a function of these parameters. The formula can
be used to obtain the magnitudes of liquid–liquid surface tensions from experimental contact
angle/potential plots, and may be useful for experimentalists.

As a final note, it should be mentioned that the physics presented here may be practically
applicable to phase-transfer catalysis [33, 34]. The potential in the bulk of the droplet, �∗,
can play an important role in cases where charge-transfer processes occur at the liquid–liquid
interface. When ions transferable across the interface are present, the bulk potential defines
the ionic equilibrium (that is, the potential partition) between the droplet and the surrounding
phase. Although this work does not apply to systems where Faradaic processes occur, it may
be possible to extend the theory in this direction. It would be logical to approach first the cases
in which dilute reactants are well supported by two immiscible electrolytic solutions.
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Appendix A. Computation of integrals for arbitrarily sized hemispherical droplets

Analytical forms for the integrals contained in fm are given by∫ 1

0
e−ax P2m+1(x) dx = 1 F2({1}, { 1

2 − m, 2 + m}, a2

4 )
√
π

2�( 1
2 − m)�(2 + m)

−
√
π

2a
I2m+ 3

2
(a) (A.1)

and∫ 1

0
xe−ax P2m+1 (x) dx =

√
2π
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I2m+ 3

2
(a)+
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)
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2
(a)

]

− a
√
π

4
1 F2({2}, { 3

2 − m, 3 + m}, a2
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�( 3
2 − m)�(3 + m)

. (A.2)

These two expressions were derived with one of the definite integrals from [35]. Here, 1 F2 is
the Barnes extended hypergeometric function, given by the series

1 F2 ({a1} , {b1, b2} , x)

� (b2) � (b1)
= 1

� (a1)

∞∑
k=0

� (a1 + k) xk

� (b1 + k) � (b2 + k) � (k + 1)
. (A.3)

Straightforward numerical subroutines are available to compute the functions Iν , Kν , and
1 F2 [36, 37]. As the harmonic number m increases, the contributions to fm from the modified
Bessel functions decrease dramatically relative to those from 1 F2.

An analytical form for the integral of the Legendre polynomial in gm is given by the
relation [38] ∫ 1

0
P2m+1 (x) dx = (−1)m �(m + 1

2 )

2
√
π�(m + 2)

. (A.4)
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Figure B.1. Charge and potential distributions for δ = 5 with φ∗ = 0. The droplet carries an
unphysical net charge.

Equations (A.1), (A.2), and (A.4) give all the quantities needed to evaluate the Fourier–
Legendre coefficients in equation (22).

Finally, an analytical expression is available for the integral contained in hm . One can use

hm = (δζ )3
(
δζ

2

)2m+ 3
2 (−1)m 1 F2({2 + m}, {m + 3, 2m + 5

2 }, δ2ζ 2

4 )�(m + 1
2 )

4
√
π�(m + 3)�(2m + 5

2 )I2m+ 3
2
(δζ )

(A.5)

to evaluate equation (24). Numerical accuracy is lost in this expression when δζ is large.

Appendix B. The case of a permeable boundary

The charge-conservation equation (1) can be ‘turned off’ by setting φ∗ to zero. Figure B.1
demonstrates the system response when typical PB electrostatics is employed and ions reflected
from the liquid–liquid interface are ignored (the typical approach when droplets are large). In
the figure, the potential decay looks like Debye screening from a planar electrode both within
and outside the droplet. In addition, the potential plateaus visible in figure 3 have disappeared.
There is no countercharge at the liquid–liquid surface, and there is a negative net charge on the
droplet: thus, if the potential shift due to an impermeable liquid–liquid surface is neglected,
the electrostatics yield an aphysical net charge on the droplet. This physical picture would be
correct if the droplet had a permeable boundary.

Appendix C. Asymptotic expansions

C.1. Modified Bessel functions

Many of the quantities introduced in section 3.5 contain ratios of modified Bessel functions. In
particular, it is necessary to expand the ratios of modified Bessel functions in Cm and hm such
that the lower-order corrections in δ are independent of m. This can be achieved with two of the
expansions from [39]. For ratios of the form Ip+n(x)/Ip(x), we define Î (i)m (x, n) as the term of
order x−i in the ratio with p = 2m + 3

2 , such that

I2m+ 3
2 +n (x)

I2m+ 3
2
(x)

≈ Î (0)m (x, n)− Î (1)m (x, n)

x
− Î (2)m (x, n)

x2
+ o(x−3). (C.1)
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Using expansion 7.13.2 (9) from [39], we find

Î (0)m (x, n) = A2m+ 3
2 ,n
(x) ,
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Î (2)m (x, n) = A2m+ 3
2 ,n
(x)

[
G

(
4m + 3

2x

)
− G

(
4m + 3 + 2n

2x

)

+ F

(
4m + 3

2x

)
F

(
4m + 3 + 2n

2x

)]
. (C.2)

The three functions introduced here are defined as
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F (x) = − 1
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G (x) = 9
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)3 . (C.5)

Ratios of the form K p(x)/K p+n(x) can be treated in a similar fashion using
expansion 7.13.2 (10) from [39]. Define K̂ (i)

m (x, n) as the term of order x−i in the ratio with
p = 2m + 1

2 , such that

K2m+ 1
2
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Use of the asymptotic expansion shows that
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where F(x) and G(x) are defined by equations (C.4) and (C.5), respectively, and
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defines the function Bp,n(x).
The functions Î (i)m and K̂ (i)

m take into account the order dependence of the ratios, and are
all o(δ0). Also, the ratios are defined such that, when x is fixed, both tend to zero as p → ∞
or n → ∞. In the limit as x → ∞, both zero-order contributions to the ratios go to unity, and
all corrections of order lower than zero go to zero.
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C.2. Integrals in the Fourier–Legendre expressions

The precise forms of the asymptotic corrections given in equation (25) are

fm ≈ (−1)m � (2m + 3)

22m� (m + 1) �(m + 2)

[ 1/ζ 2−ζ 2

δ2

0

]
+ o(δ−3), (C.9)
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Definitions (C.1) and (C.6) may be used to express Cm as
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Î (0)m (δζ, 1) χ

ζ
K̂ (0)

m (δ/ζ , 1)

]
+

[
0 0
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The last quantity containing ratios of Bessel functions is the integral over droplet volume
in hm . This expansion requires additional analysis. To obtain an asymptotic expression valid
at large δ, one can use a derivative relation for the modified Bessel functions [40] and integrate
successively by parts to show that
∫ δ
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Insertion of this relation and equation (A.4) into equation (23) gives
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which contains an infinite series of the ratios defined in equation (C.1). Inserting that expression
demonstrates that

hm ≈ (δζ )2 (−1)m
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which are the higher-order corrections to hm given in equation (27). All of the ratios go as
A2m+ 3

2 ,k+1 (δζ ); by substituting that function into equation (C.14), it can be verified that the
sums over k are convergent when δζ � 2.

Appendix D. The three-phase contact region: potential and energetics

D.1. Potential distribution

Here we provide the potential distribution in the singular region near the line of three-phase
contact and demonstrate that the energetic contribution of this region can be neglected in cases
when droplets are large. Figure D.1 shows a coordinate system suitable to treat the contour
along which the three phases meet. The region can be approximated as a wedge geometry,
amenable to cylindrical coordinates. Let the axis of the cylinder be along the contact line, R
denote a radial coordinate extending from the contact line, and � give the azimuthal angle of
the cylinder, which ranges from 0 at the electrode in region d to π at the electrode in region s.
With coordinates constructed in this fashion, αc retains the same definition. The dimensionless
radial coordinate, ρ, is given by
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Figure D.1. Coordinate system for the region near the three-phase contact line.

ρ = R√
λdλs

. (D.1)

This region is taken to extend to radius ρ0 around the three-phase contact line.
Because regions d and s are both semi-infinite in this case, the mass-conservation condition

does not apply and the linearization around φ∗ may be neglected in the formulation of the
governing equations. The PB equations in the wedge geometry are

∂2φcl
d

∂ρ2
+ 1

ρ

∂φcl
d

∂ρ
+ 1

ρ2

∂2φcl
d

∂�2
− ζ 2φcl
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∂2φcl
s

∂ρ2
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ρ

∂φcl
s

∂ρ
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ρ2

∂2φcl
s

∂�2
− φcl

s

ζ 2
= 0, αc � � � π,

(D.2)

where a superscript cl indicates the portion of the potential distribution owing to the region of
three-phase contact. These equations take the boundary conditions

φcl
d (ρ, 0) = 1, φcl

s (ρ, π) = 1, (D.3)

and the matching conditions

φcl
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. (D.4)

Using superposition to account for the typical solution for potential around a semi-infinite
isopotential surface, the problem can be solved with distributions

φcl
d (ρ,�) = e−ρζ sin� + ϕcl

d ,

φcl
s (ρ,�) = e−ρ sin�/ζ + ϕcl

s .
(D.5)

The resulting equations for ϕcl
j are homogeneous and separable.

To obtain the unknown functions ϕcl
j , it is most direct to use the Kontorovich–Lebedev

integral transformation [41]. The forward and inverse Kontorovich–Lebedev transformations
are defined as

Lν { f (ρ)} ≡ 2

π2
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0
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ρ
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f (w)wKiw (νρ) sinh (πw) dw = f (ρ),

(D.6)

where Lν{ } denotes the Kontorovich–Lebedev operator and an overbar indicates a transformed
function.
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As the goal here is to illustrate qualitative behaviour of the potential in the singular region,
we take ζ = 1 to simplify the problem. Then ν = 1 in the transformation for regions d and s.
Corrections to normal Debye screening for the potential distributions are given by

ϕcl
d (ρ,�) = L−1

1

{
Rd (w) sinh (w�)

}
,

ϕcl
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}
.

(D.7)

The functions Rd and Rs give the radial dependence of the potentials in the frequency domain.
They can be obtained from the transformations of the potential- and electric displacement-
matching conditions, which result in the expressions
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in which the function b(w) is defined as

b(w) = χ2 cosh [w (π − αc)] sinh (wαc)+ sinh [w (π − αc)] cosh (wαc) . (D.9)

In addition, one can use the series expansion [42]
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to express the modified Bessel functions. After inserting this expansion, a change of variables
allows the inverse Kontorovich–Lebedev transformations to be expressed as

iϕcl
d (ρ,�)

1 − χ2
=

∞∑
k=0

∫ ∞

−∞

sinh [w (π − αc)] sinh
[(
π
2 − αc

)
w

]
sinh (w�)

b (w) sinh (πw)� (k + 1) � (k + 1 − iw)

(ρ
2

)2k−iw
dw,

iϕcl
s (ρ,�)

1 − χ2
=

∞∑
k=0

∫ ∞

−∞

sinh (wαc) sinh
[(
π
2 − αc

)
w

]
sinh [w (π −�)]

b (w) sinh (πw)� (k + 1) � (k + 1 − iw)

(ρ
2

)2k−iw
dw.

(D.11)

Equation (D.9) for b(w) shows that the integrand of the inversion integral has poles along the
imaginary axis. The locations of the poles can be obtained from the roots of

χ2 tan
(
wpαc

) + tan
[
wp (π − αc)

] = 0, (D.12)

where wp denotes a pole. Note that wp takes a real value (the poles are along the imaginary
axis at iwp), and that wp = 0 is not a pole because of the forms of the numerators in
equations (D.11). The pole closest to zero in the upper half-plane, denoted w0, dominates
the inversion integral.

Examination of the denominators in equations (D.11) shows that no branch cuts are
necessary. The corrections to the potentials for 0 � ρ < ρ0 are therefore given by the theorem
of residues, which yields

ϕcl
d (ρ,�) = M0 (αc, χ) sin [w0 (π − αc)] sin (w0�) Iw0(ρ),

ϕcl
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in which the function M0 is defined as

M0 (αc, χ) = 2π
(
χ2 − 1

)
sin

[
w0

(
π
2 − αc

)]
sin (πw0)

× {[
(π − αc)+ χ2αc

]
cos (w0αc) cos [w0 (π − αc)]

− [
χ2 (π − αc)+ αc

]
sin (w0αc) sin [w0 (π − αc)]

}−1
, (D.14)
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Figure D.2. Plots of w0 and M0 as a function of αc for χ = 1.5 and ζ = 1.

and the value of w0 is given by the first positive (nonzero) root of equation (D.12). The value
of ρ0, which gives the size of this region, was estimated to be 0.1 Debye lengths, as suggested
by the value of θzc from the asymptotics for hemispheres at δζ = 1225.

Figure D.2 presents w0 and M0 as functions of αc for the value of χ given in table 1.
From the figure, one can see that w0 is near unity for all contact angles. When the contact
angle is obtuse, w0 > 1, showing that the fields converge at the three-phase contact line (as
ρ → 0). The fields diverge when contact angles are acute. The opposite behaviour holds when
χ < 1. When χ = 1, w0 is uniformly equal to 1. Because w0 > 0.5 in all of these cases, the
electrostatic energy of the three-phase contact line converges, although the fields diverge.

The plot of M0 (αc, χ) in figure D.2 shows that it is always negative; typical Debye
screening is enhanced along the three-phase contact line for all contact angles. This behaviour
holds at all magnitudes of χ . Although M0 diverges as contact angles approach 0 or π , the
additional sine functions in equations (D.13) cause ϕcl

d and ϕcl
s to go to zero at these extremes.

D.2. Neglect of the three-phase contact region for large droplets

To determine the impact of the three-phase contact line when droplets are large, one can
compare the work to polarize regions ds and de under the large-droplet approximation to
the work required to polarize the region near the three-phase contact line where the potential
changes along the liquid–liquid surface.

Our analysis of the potential distribution was simplified by taking ζ = 1. The energy
contribution of this region relative to the reference state, �Ecl, can be expressed as

�Ecl

2πε0�
2
0

√
λdλsεdεs

= N (αc, χ)
δ
√
η − 1

η
(D.15)

when ζ is unity. This is the energy to polarize a region with radius 0.1
√
λdλs around the line

of three-phase contact (a range suggested by the hemispherical solution for xzc at δζ = 1225),
and is taken relative to a droplet-free reference state.

The function N(αc, χ) relies on quantities arising from the integration in equation (42). N
is plotted with respect to contact angle in figure D.3. Equations (44) and (D.15) show that �E
is of order δ2 and �Ecl is of order δ. Thus, the ratio �Ecl/�E is proportional to 1/δ; as the
droplet volume increases, the contribution of the three-phase contact region to the total energy
shrinks as V −1/3

d .
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Figure D.3. Plot of N(αc, χ) as a function of αc for χ = 1.5 and ζ = 1.

Figure D.4. Plot of |�Ecl/�E | as a function of αc for droplets of constant volume with χ = 1.5
and ζ = 1. The value of δ is 1225 at αc = π/2.

Figure D.4 shows the electrostatic energy of the three-phase contact region in comparison
to those of the two-phase interfaces as a function of contact angle. The presented data are for
droplets with ζ = 1 and χ = 1.5; the volume is set to that of a hemispherical droplet with
δ = 1225. This value of δ is the lower limit of validity of the approximation that δ → ∞
for hemispherical droplets, and thus is the upper bound of |�Ecl/�E | in the large-droplet
approximation. The figure demonstrates that the contribution of the three-phase contact line
is less than 1% of �E at all contact angles, and is in fact less than 0.01% of it when αc is
less than 8π/9 (160◦). This concludes the demonstration that for large droplets—that is, for
droplets with Vd � 2π(1225λd)

3/3—one can neglect the three-phase contact line and use the
large-droplet approximation to describe electrostatic contributions to the free energy.

For the electrostatic contribution of the three-phase contact line, �Ecl, to be neglected
when minimizing the total free energy (as in section 5), its derivative with respect to contact
angle must be small compared to the derivative with respect to contact angle of �E . A
comparison of these derivatives shows that the change in �Ecl is less than 1% of the change in
�E at all contact angles when δζ = 1225, justifying its neglect.
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